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Steady flow around a body when it is towed along the bottom of a channel in a thin homogeneous layer 

of a two-layer liquid which is initially at rest is investigated using a model of the flow of two-layer 

shallow water with mixing between the layers [l]. It is shown that, in the case of superaitical towing 

conditions, a local subcritical zone is formed ahead of the body and that the length of this zone depends 

on the height of the body. 

When a stratified liquid flows under supercritical conditions over an uneven bottom, linear 
waves cannot propagate from an obstacle upwards through the liquid and the phenomenon of 
blocking, that is, the retardation of the fluid particles in a certain quite narrow flow domain, is 
associated with the substantially non-linear characteristics in the propagation of long waves. 
The structure of long plane waves in a two-layer liquid which are generated during the towing 
of a body has been investigated theoretically and experimentally [2-51. The propagation of a 
non-linear wave upwards through the liquid reorganizes the flow. In turn, the velocity drift 
between the layers which arises is a source for the generation of short waves and of intermixing 
at the interface between the homogeneous layers. The concerted action of non-linear effects an 
intermixing can lead to a steady flow pattern during which a finite zone of partially blocked 
liquid is formed in front of the body. The steady, continuous solution, obtained in this paper, 
of the problem of the blocking of a flow accompanying the supercritical flow around the body 
reflects these characteristics of the flow of mixing liquids and considerably extends the range of 
applicability of the mathematical model. 

I. Suppose a channel with a horizontal bottom is filled with a two-layer fluid of depth H 
which is at rest and, moreover, let the depth h, of the lower, heavier layer be small compared 
with 27. The problem consists of describing the structure of the waves in the neighbourhood of 
an immersed body of height 6,, which is towed along the bottom at a constant velocity D. 

In the Boussinesq approximation ((p- p’)lp’%l), plane-parallel flow is characterized by two 
dimensionless parameters 6 = 6, lh, and Fr = D/d(&), where b = @- -p’)g/p’ is the 
buoyancy of the lower layer and p+ and p- are the densities of the upper and lower layers and 
g is the acceleration due to gravity. 

In the case of non-mixing liquids when h,/H<l, the equations of motion are identical to those for a 

homogeneous shallow water with a “modified” gravitational acceleration g’= b. A diagram of the waves 

which are generated during a sudden motion of the body (Fr, 6), has been given in [2] for this case. In the 

case of a supercritical towing regime (Fr > l), a steady, completely supercritical flow regime over the body 

is possible when 6 < g,(Fr) = Fr’ /2+ 1 = 3Frx /2 and there are no perturbations of the flow in front of or 

behind the body. On the other hand, when 6 > g,(Fr), an internal hydraulic jump can be formed which 
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propagates at a velocity D, 5 D. At the same time, the flow which is continuous and steady with respect 
to the body changes into a subcritical flow (I u, - D I < d(bh,)) in f ront of the body and a supercritical flow 
(I u1 -D I > d(b&)) behind it. Here, /I, and U, are the depth and velocity of the flow in front of (i = 1) and 

behind (i = 2) the body. The monotonic dependence 6 = 6,(Fr) is found from the condition D, = D, and 
the relationship 6,(Fr)<6,(Fr) is satisfied for Fr>l (1). The possible flow pattern is therefore non- 
unique in the case of supercritical flow when g,(Fr) < 6 < g,(Fr). Experimentally, this non-uniqueness of 
the flow, which has been pointed out above, has been detected in a much narrower region [4]. 

The problem of the non-uniqueness of the steady flow is intimately associated with the problem of the 
choice of relationships in internal hydraulic jumps. Thus, if the law of conservation of total momentum in 

the lower layer, which is applied as in the case of a single liquid layer, is replaced by the condition that the 
flow is potential, then the “hysteresis” disappears but the total momentum is not conserved in a two-layer 
system. While there are different approaches to the derivation of relationships at discontinuities [6, 71, this 

problem cannot be solved within the framework of a model of a two-layer flow. The above-mentioned 

contradiction is removed in the more complete three-layer model [l] which takes account of such 
phenomena as intermixing and the generation of short waves at the interfaces of the homogeneous layers. 

In the case of mixing liquids, the formulation of the problem on the blocking of the flow and 
the governing parameters remain the same as in the case of non-mixing liquids, but the 
structure of the waves, which are generated by the motion of a body, changes substantially. 
Because of the inhomogeneity of the equations, the solution no longer tends to a self-similar 
solution which makes the description of the asymptotic form more difficult. On the other hand, 
the role of steady flows in the neighbourhood of the body increases since, unlike in the case of 
non-mixing liquids, a wave which has left the body comes to a halt due to mixing in the case of 
a certain range of parameters. Such stationary solutions, which describe the effect of partial 
blocking of the flow during supercritical flow are fundamentally new and considerably extend 
the range of applicability of the equations of two-layer, shallow water with an irregular 
interface. 

In the Boussinesq approximation, the system of equations for the plane-parallel flow of a 
thin homogeneous layer of a heavy liquid in a flooded space taking mixing and small scale 
motion into account has the form [l] 

(h+r\/2),+(hu+nu/2), =o 

(bh + &Tl), + (Mu + Lrl’u), = 0 

u,+(U2/2+bh+&l), =o 

(hu+?ju), +(hU2 +nu2 +bh2 /2+&qh+&q2 /2), =0 

(hU2+TJ(UZ+qZ)+bh2 +2Lrlh+F712), + 

+(@ + TJU(U2 + 42) + 26h2u + 2b(h + n)nlu + 2&Tlhu), = 0 

rl,+(nu), =2cJq (G=(LQ+)g/P+ 

(1.1) 

Here, h, 71 are depths, IL, u are the horizontal components of the mean velocity in the lower 
layer and the interlayer, _C is the density in the interlayer and q is the velocity of the “large 
vortices” which are responsible for the drawing in of liquid from the homogeneous layers into 
the interlayer. The numerical value of the coefficient CT = 0.15 is determined from an analysis of 
the mixing-in a homogeneous liquid and only has an effect on the ratio of the vertical and 
horizontal scales since the parameter o can be eliminated from system (1.1) by an appropriate 
elongation of the independent variables. System (1.1) is obtained by adding the complete laws 
of conservation of mass, momentum and energy to the usual “shallow water” equations for the 
lower layer, and the corresponding quantities in the interlayer between the homogeneous 
layers are determined from these. 

By virtue of (l.l), the process of drawing in a liquid is symmetric with respect to the centre 
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of the interlayer and the relationship b=b/2 holds until h >O. When h = 0, system (1.1) 
describes the evolution of a turbulent homogeneous layer [8]. In this case, the rate at which 
liquid is drawn-into the interlayer is halved since nothing is drawn into the lower layer and the 
magnitude of b becomes variable. 

System (1.1) is written in the form of laws of conservation and therefore determines both the 
continuous and discontinuous solutions. The relationships in the internal hydraulic jumps are 
uniquely derived from the conditions at the discontinuities. It has been shown [l, 81 that the 
system under consideration possesses a rich set of solutions of the travelling-wave type. 
Amongst these, there are continuous, soliton-like solutions and discontinuous solutions of the 
“jump-wave” and the “gentle wind” type. The stationary solutions describe the basic features 
of the flow in the problem of the outflow of a jet into a liquid of different density which is at 
rest and of the formation of a mixing layer and its transition into an immersed stream. In 
particular, the maximum flow rate of a liquid which is drawn into a mixing layer or an 
immersed stream can be determined within the framework of the model without invoking 
additional hypotheses. 

The simultaneous use in system (1.1) of the laws of conservation of momentum and energy 
raised the problem of passing to the limit of a two-layer flow within the framework of this 
model since, in the limit when IJ = 0, these laws contradict one another. Actually, in the case of 
a wave which propagates at a velocity D > d(bh,J(q,, = 0) in a liquid which is at rest, it would 
appear that neither a continuous profile (the flow is supercritical with respect to the wave 
front) nor a discontinuous profile (IJ = 0 behind the wave by virtue of the laws of conservation) 
can exist, and the laws of conservation of momentum and energy cannot be satisfied simul- 
taneously. However, the peculiarities of the behaviour of the characteristics of a three-layer 
flow and the fact that the drawing in process is taken into account in Eqs (1.1) enable one to 
resolve this paradox. In the following section it will be shown that, when Fr > 1, a domain of 
blocked liquid of finite length is formed in front of the body and, in this domain, the flow is 
steady and subcritical with respect to the body around which the flow occurs. Moreover, when 
TJ + 0, the solution does not contain singularities by virtue of the fact that the part of the liquid 
in the interlayer is accelerated up to a velocity which is close to the towing velocity D. 

2. Solutions of system (1.1) when Q = 0, I& = 0 and Fr > 1 (Fig. 1) which are stationary with 
respect to the body are considered. As was pointed out above, b = b/2 in the interlayer and the 
conservation laws (1.1) take the form 

L iUho x 

Fig. 1. 
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hu+qlu/2-D(h+q/2)=-Dh, 

u2/2+h/2+bh-Du=bb=J- 

hu2+r)v2-D(hu+7)2))+b(h2+hrj+y2/2)/2=b$,22 

~(II - D)(u’ + q2) + h(u - D)u2 + hhu + b(h + q)qlu + 2bh’u - 

-bD(?j2/2+h?j+h2)=-bD% 

(2.1) 

By virtue of (2.1), all the required quantities can be expressed as functions of a single 
variable u, for example. The dependence of Q = ~(0 - u) on II is shown in Fig. 2 for Fr = 2. 
Along branch B, when u+O, we have q +O, h -+h,, Q -+O. In the case of the function 
u = U(U) the limit u(O) = D can be found by differentiating the first three equations of (2.1) and 
taking the limit as II +O in the resulting relationships. Next, in order to show that the limit 
q*(O) = 0’ exists, it is necessary to reveal a singularity in the energy equation by differentiating 
relationships (2.1) twice. States in branch A are not considered since the function @)(zL) is 
negative on this branch. 

Only points for which q2(u) > 0 (the solid line in Fig. 2) have a physical meaning on branch 
B. A stationary solution can therefore take values Q only in the interval (0, Q,,). The 
dependence of the required quantities on the variable 5 = x - Dt is found from the equation 

de(u) / 4 = 2odu) (2.2) 

the solution of which, when account is taken of (2.1), can be obtained in quadratures. In 
particular, the dependence of the length of the stationary blocked zone L on the amount of 
liquid Q which is drawn into the interlayer follows from (2.2). 

The motion of the obstacle completely determines the steady flow upwards and downstream 
in the case when the flow is supercritical behind its crest and small perturbations in the flow do 
not reach the segment O-l (Fig. 1). This is possible if the flow is critical on the crest (state c) 
and subcritical in the segment O-l. 

It has been noted [l] that the characteristics of system (1.1) consist of the characteristics of 
two-layer shallow water [9] and the multiple characteristic dx ldt = 2). The condition for the 
criticality of state c is therefore determined by the vanishing of the characteristic determinant 
A(h) 

(2.3) 

when h=D, u=u,, u=u,, h=h,, q=q,. 
In the case of a relatively small length of the body which is blocked, it is possible to neglect 

the process in which fluid is drawn in directly above it. Then, the closed relationships, which 
link state c on the crest and state 1 immediately ahead of the body, have the form 

h,(D-u,)=h,(D-u,)=Dh,,-Q,/2 

u,2/2-Du,+~c/2+bhc+b6=J- 

u,2/2-Du,+b(~,+hc+6)/2=u;/2-Du,+b($+h,)/2=J; 

q,2 = 4: 

(2.4) 

In the (u, Q) plane, the dependence Q(U), which is represented by curve A in Fig. 2, 
corresponds to a supercritical flow (h, CD) while curve B corresponds to a subcritical flow 

(A(D) < 0) + 



Blocking of the flow of a two-layer mixing liquid around an obstacle 689 

Fig. 2. 

Here, 3L,, is the greatest root of the equation A(h) = 0. 
Hence, for any value of Q, in the range (0, Q,), a stationary subcritical blocked zone of 

finite length may be constructed in front of the body. Within this zone, Q varies from 0 to Q,. 
The dependence 6 = S(Q,) is then uniquely found from relationships (2.3) and (2.4). Naturally, 
6 + 0 when Q, + 0, and a whole domain adjoining the abscissa and corresponding to steady 
flow conditions arises in the (Fr, @-plane when Fr > 1. At sufficiently high towing velocities 
(Fr > 2.1) and body height 6, the interlayer reaches the bottom (14 when Q, = 2011,). An 
analysis of the running waves in the case of a completely mixed lower layer has been carried 
out in [8]. 

The stationary solution obtained in the problem of the blocking of the flow of a two-layer 
mixing liquid during supercritical flow around a body has a number of interesting properties. 
It provides an example of a self-consistent, continuous solution of a problem concerning a 
local zone of subcritical flow which does not have singularities but, at the same time, possesses 
a fine internal structure. In particular, the length of the zone where the flow is blocked is 
exceedingly sensitive to the height of the body and to the towing velocity. The stationary 
solution which has been constructed can therefore serve as a good test in the case of non- 
stationary calculations. 

The numerical solution of an unsteady problem on the motion of an obstacle with a constant 
velocity (Er = 2) at long times is shown by the solid line in Fig. 1 while the corresponding 
stationary solution is shown by the dashed line. They are only observed to diverge from one 
another in the neighbourhood of the body. This is due to the fact that the finiteness of the 
length of the body has been taken into account in the non-stationary calculation. Calculations 
show that, in the case of towing parameters which correspond to steady flow, this regime is 
attained after a long time but the non-stationary segment of the acceleration of the body has a 
substantial effect on the intermediate picture of the flow and the phenomenon of “hysteresis”, 
that is, a dependence of the flow picture on the method of accelerating the body, was also 
observed in a numerical experiment at times which are characteristic of experiments [4]. 
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